Efficient Bayesian phase estimation using mixed priors
نویسندگان
چکیده
منابع مشابه
Efficient Bayesian Phase Estimation.
We introduce a new method called rejection filtering that we use to perform adaptive Bayesian phase estimation. Our approach has several advantages: it is classically efficient, easy to implement, achieves Heisenberg limited scaling, resists depolarizing noise, tracks time-dependent eigenstates, recovers from failures, and can be run on a field programmable gate array. It also outperforms exist...
متن کاملBayesian generalized linear mixed modeling of Tuberculosis using informative priors
TB is rated as one of the world's deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most ap...
متن کاملBayesian wavelet-based image estimation using noninformative priors
The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. Most schemes use arbitrary thresholding nonlinearities with ad hoc parameters, or employ computationally expensive adaptive procedures. We overcome these de ciencies with a new wavelet-based denoising technique derived from a simple empirical Bayes approach ba...
متن کاملBayesian estimation of incomplete data using conditionally specified priors
In this paper, a class of conjugate prior for estimating incomplete count data based on a broad class of conjugate prior distributions is presented. The new class of prior distributions arises from a conditional perspective, making use of the conditional specification methodology and can be considered as the generalisation of the form of prior distributions that have been used previously in the...
متن کاملAdaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors
Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum
سال: 2021
ISSN: 2521-327X
DOI: 10.22331/q-2021-06-07-469